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Turbulent solutions of the two-dimensional Navier–Stokes equations are a paradigm
for the chaotic space–time patterns and equilibrium distributions of turbulent
geophysical and astrophysical ‘thin’ flows on large horizontal scales. Here we
investigate how homogeneous, stationary two-dimensional turbulence varies with
the Reynolds number (Re) in stationary solutions with large-scale, random forcing
and viscous diffusion, also including hypoviscous diffusion to limit the inverse energy
cascade. This survey is made over the computationally feasible range in Re � 1,
approximately between 1.5 × 103 and 5.6 × 106. For increasing Re, we witness the
emergence of vorticity fine structure within the filaments and vortex cores. The
energy spectrum shape approaches the forward-enstrophy inertial-range form k−3

at large Re, and the velocity structure function is independent of Re. All other
statistical measures investigated in this study exhibit power-law scaling with Re,
including energy, enstrophy, dissipation rates and the vorticity structure function.
The scaling exponents depend on the forcing properties through their influences on
large-scale coherent structures, whose particular distributions are non-universal. A
striking result is the Re independence of the intermittency measures of the flow, in
contrast with the known behaviour for three-dimensional homogeneous turbulence
of asymptotically increasing intermittency. This is a consequence of the control of the
tails of the distribution functions by large-scale coherent vortices. Our analysis allows
extrapolation towards the asymptotic limit of Re → ∞, fundamental to geophysical
and astrophysical regimes and their large-scale simulation models where turbulent
transport and dissipation must be parameterized.

1. Introduction
Since Kolmogorov’s work (1941, 1962), the prevailing paradigm for isotropic,
homogeneous, stationary fluid turbulence at large Reynolds number (Re) has been
the statistical dynamical independence of Re in the energy inertial range, i.e. on
scales between energy injection and dissipation. Theoretical attempts to assess this
premise for three-dimensional turbulent flows face a great computational challenge to
reach large Re and the unresolved question of whether smooth initial conditions and
forcing always yield non-singular, long-time solutions. Two-dimensional turbulence,
on the other hand, is computationally more accessible, is non-singular (Ladyzhenskaya
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1969), and has deep connections to the behaviour of flows subject to rapid
rotation and density stratification as the atmosphere and ocean (Charney 1971)
and magnetic stratified fluids (Paret & Tabeling 1997). Theoretical studies with a
statistical description assuming isotropy and homogeneity predict a dual cascade,
with a forward cascade of enstrophy (vorticity variance) towards small scales and
an inverse cascade of energy (Kraichnan 1967; Batchelor 1969). In the limit of
infinite domain size and zero viscosity, the predicted isotropic energy wavenumber
spectrum shape is k−5/3 in the inverse cascade range, verified in both laboratory
experiments (Paret & Tabeling 1997) and numerical simulations (Borue 1994; Boffetta,
Celani & Vergassola 2000), and it is k−3 in the inverse range (with possible logarithmic
corrections; Kraichnan 1971), with slightly steeper spectrum slopes generally reported
in numerical simulations (Borue 1993; Gotoh 1998; Pasquero & Falkovich 2002). The
departures from statistical–theoretical predictions in two-dimensional turbulence are
usually associated with the spontaneous emergence of long-lived coherent vortices
(McWilliams 1984; Bracco et al. 2000b). Theoretical studies also predict a universal
behaviour of scaling exponents for steady two-dimensional turbulence in the direct
cascade regime independent of the forcing, under the assumptions that coherent
vortices are isolated entities that do not contribute to the small-scale correlation
functions (Falkovich & Lebedev 1994; Eyink 1995).

The aim of this paper is to examine the central idea of classical turbulence
that the equilibrium statistical properties of the flow are invariant as long as Re
is sufficiently high, focusing on the enstrophy cascade range in stationary two-
dimensional turbulence with random forcing at small k and damping at both large
and small wavenumbers. Prototypes for this kind of calculation are described by
Borue (1993) and Schorghofer (2000a).

2. Model formulation
The vorticity equation for a two-dimensional flow is

Dω

Dt
=

∂ω

∂t
+ J [ψ, ω] = D + F. (2.1)

Here ω is the relative vorticity (ω = (∂2ψ/∂x2) + (∂2ψ/∂y2) = Δψ). Note that ψ is
the streamfunction (related to velocity components by u = −(∂ψ/∂y), v = ∂ψ/∂x).
Similarly, Δ is a two-dimensional Laplacian operator and J is a two-dimensional
Jacobian operator (J [ψ, ω] = (∂ψ/∂x)(∂ω/∂y) − (∂ψ/∂y)(∂ω/∂x)). Note also that
D = μΔ−1ω + νΔω is a generalized damping term composed of a physically artificial
hypoviscosity μ to provide an energy sink at small k to balance the inverse energy
cascade and a conventional viscosity to provide an enstrophy sink at large k. We
verified that the alternative use of Ekman drag (∝ − ω) to dissipate energy at large
scales provides analogous results albeit with a narrower inertial range in k. The
forcing F acts only at large scales in an isotropic shell [k0 − dk, k0 + dk] with k0 = 4
and dk = 1. It has a fixed spectrum amplitude a, but random phase φ in wavenumber
vector k that ensures an incoming energy input rate

QE = −
∫

Fψ dx.

Thus, QE changes randomly with time but has a constant long-time average. Note
that φ is determined by a Markov process with a memory time tF . Because the energy
input QE depends on the solution at the forcing wavenumber, we can compare energy
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Case parameters
——————————————————————–

Re N ν −α

(a = 0.14, tF = 0.005, μ = 1.5)
1.5 × 103 256 1.0 × 10−3 −4.10 ± 0.15
1.0 × 104 512 3.0 × 10−4 −3.80 ± 0.13
6.7 × 104 1024 8.5 × 10−5 −3.45 ± 0.10
3.3 × 105 2048 2.5 × 10−5 −3.27 ± 0.08
1.4 × 106 4096 1.2 × 10−5 −3.19 ± 0.05
5.6 × 106 8192 4.6 × 10−6 −3.10 ± 0.03

(a = 0.005, tF = ∞, μ = 1.65)
1.7 × 103 256 2.5 × 10−3 −3.87 ± 0.15
6.4 × 103 512 8.5 × 10−4 −3.62 ± 0.13
3.2 × 104 1024 2.5 × 10−4 −3.41 ± 0.10
1.3 × 105 2048 9.0 × 10−5 −3.30 ± 0.08

Table 1. Parameters used in this study for the set of runs with tF = 0.005 and tF = ∞. The
right-end column is the negative power-law exponent of the energy spectrum calculated in the
inertial range by a least-square fit. Errors are based on the spread between single-time fits.
The spectra have been averaged over 13 different times for N � 1024 and over 26 frames for
the three lowest N cases.

transfer rates for increasing Re. This forcing procedure differs from the temporally
white random forcing used by Borue (1993), and it allows coherent vortices to form
without immediate disruption by the forcing. Below we will focus on a set of runs with
tF =0.005 chosen to be 1 order of magnitude shorter than the eddy turnover time at
Re ≈ 7 × 104. We verified that the principal conclusions about Re dependency hold
for a larger value of memory time, tF = 0.07, with corresponding reduction of a. A
third set of runs, spanning a more limited Re range, has been computed using fixed φ,
equivalent to having tF = ∞ and a much smaller amplitude of the forcing function, and
is briefly discussed for comparison. All integrations are performed using a standard
pseudo-spectral code with 2/3 de-aliasing and a third-order Adams–Bashforth time-
integration scheme in a doubly periodic domain with size L = 2π. The viscosity ν at
each grid-size N × N has been chosen to maximize the resulting Re while avoiding
spurious oscillations (computational noise). The same F and μ are used in runs with
different Re. A list of parameters is given in table 1.

The terms E and Z are spatially averaged mean energy and enstrophy, respectively,
defined by

E =
1

2L2

∫
(∇ψ)2 dx dy, (2.2)

Z =
1

2L2

∫
(∇2ψ)2 dx dy, (2.3)

and they are reported here as time averaged. The Reynolds number is defined as
Re =U/νkE , where U is the root-mean-square (r.m.s.) velocity of the flow,

√
2E,

and kE is the centroid wavenumber, kE = (
∫

kE(k) dk)/(
∫

E(k) dk). Each integration is

run for at least 5 × 104 eddy turnover times, te = 1/
√

Z, once stationarity is reached,
to ensure accuracy in the flow statistics. In statistical equilibrium, the energy and
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Figure 1. Instantaneous vorticity fields for tF = 0.005 for (a) Re ≈ 1.5 × 103 (N = 256) and
(b) Re ≈ 5.6 × 106 (N =8192). In both (a, b), 1/4 of the whole [2π × 2π] domain is shown.

enstrophy balances for (2.1) are

〈QE〉 = εμ + εν, 〈QZ〉 = χμ + χν, (2.4)

where 〈·〉 is a space–time average, QZ =
∫

Fω dx, and the small- and large-scale
energy and enstrophy dissipation rates are, respectively,

εν = ν〈ω2〉, εμ = μ〈ψ2〉, (2.5)

χν = ν〈| ∇ω |2〉, χμ = μ〈| ∇ψ |2〉. (2.6)

Because our solutions have a forward enstrophy cascade to dissipation, we define
a wavenumber that indicates the onset of the dissipation range (analogous to the
inverse Kolomogorov scale in three-dimensions)

kν =
(χν

ν3

)1/6

. (2.7)

3. Results
For all Re, the flow dynamics are dominated by the presence of coherent vortices.
The number of large eddies at or just below the forcing scale k−1

0 does not vary
significantly between the different resolutions for identical forcing. For Re > 105, very
small vortices emerge in between the large eddies, and a fine structure emerges in
the vorticity field within intense filaments and even in vortex cores (figure 1). For
decreasing ν, the time for axisymmetrization of the large eddies increases, and intense
vorticity filaments persist inside the large vortices in addition to the more familiar
peripheral filaments (McWilliams 1984). With a finite tF , the large coherent vortices at
the forcing scale are extremely persistent, while in the set of simulations with smaller
forcing amplitude and tF = ∞, fewer and far shorter-living large vortices develop
(figure 2) because of the very small spectral amplitude of the forcing.

The energy spectrum in the inertial range flattens towards the classical k−3 limit
(Kraichnan 1967; Batchelor 1969) as Re increases (figure 3a) for all cases, in agreement
with previous works (Borue 1993; Schorghofer 2000a; Boffetta 2007). A simple power
law (table 1) describes the spectral functional form here better than the logarithmically
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Figure 2. Instantaneous vorticity fields for (a) tF = 0.005 and Re ≈ 3.3 × 105 (N = 2048) and
(b) tF = ∞ at Re ≈ 1.3 × 105 (N = 2048). The whole [2π × 2π] domain is shown.
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Figure 3. (a) Energy spectra and (b) second-order vorticity structure functions across the
various Re for the set of experiments with finite forcing decorrelation time.

corrected one derived by Kraichnan (1971), which assumes that velocity gradients
are δ-correlated in time. The logarithmic correction has been recovered only in
numerical simulations of two-dimensional turbulent flows characterized by the absence
of coherent vortices (Pasquero & Falkovich 2002). We also observe variations with
Re in the efficiency of the energy cascade expressed by the local energy tendency,
ΣE =dv2/dt . The probability density function (PDF) of ΣE averaged over tens of
snapshots to ensure convergence (not shown) reveals that both direct (positive ΣE)
and inverse (negative) tendencies are observed at all Re, indicating transfer of energy
to both smaller and larger scales, but the inverse cascade becomes dominant for
decreasing ν, as noted by Boffetta (2007). The shape of the PDF of enstrophy
tendency, ΣZ = dω2/dt , on the other hand, does not vary with Re (not shown), but
the inverse enstrophy cascade is particularly intense in vorticity filaments and around
the core of the vortices, in agreement with the analysis of Babiano & Provenzale
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(2007). Noticeably, we find that in all sets of runs the increase in E for increasing
Re occurs at all k, notwithstanding identical μ and F . Such behaviour is reported by
Schorghofer (2000a) limited to the intermediate scales in two-dimensional integrations
with a similar forcing configuration but spanning a much shorter time interval. We
find that a very long spin-up (several hundred eddy turnover times) is necessary to
ensure statistically stationary spectra at low wavenumbers.

The changes in spectral slopes with Re are mirrored in the behaviour of the second-
order vorticity structure functions

〈δω(l)2〉 = 〈|ω(x + l) − ω(x)|2〉, (3.1)

with l = |l | being the spatial separation distance (figure 3b). In the context of passive
scalar transport, Benzi, Paladin & Vulpiani (1990) have shown that for a given energy
spectrum E(k) ∼ kα = k−3−d with d > 0, in the limit of infinite Re and in the absence of
large-scale dissipation, 〈δω(l)2〉 ∼ ld . Although the rate at which both energy spectra
and vorticity structure functions flatten for increasing Re is properly described by
the relation above, we empirically find that the structure function slopes are slightly
steeper than those predicted by Benzi et al. (1990) calculation. As demonstrated by
Babiano & Provenzale (2007), the scale-to-scale transfers of enstrophy and passive
scalar variance differ in the inertial range because of anomalous enstrophy transfers
within the vortices and in the elliptic regions around them, and vorticity structure
function slopes are indeed steeper than the passive scalar ones. The global regularity of
the Navier–Stokes equations in two-dimensions implies that the second-order velocity
structure function velocity is 〈δv(l)2〉 ∼ l2 in the limit of infinite Re, which implies
E(k) ∼ k−α with α � 3 (Rose & Sulem 1978; Benzi et al. 1990). The velocity structure
functions (not shown) appear to be independent of Re, reflecting the approximate
invariance of the shape of the spectrum at large scales in spite of the Re variations
in the spectrum amplitude and value of α, and they compare reasonably well with
the theoretical prediction.

The statistics of two-dimensional turbulent flows are further investigated with
PDFs for streamfunction, velocity, vorticity and vorticity gradient at different Re. All
PDFs are obtained by averaging 26 (for Re < 105) or 13 (for Re > 105) snapshots
separated in time by at least 200 te, and their arguments are normalized by the
standard deviation σ for each field at each Re. Independent of the field analysed, the
distributions for each choice of tF are invariant with respect to Re within sampling
errors (Figure 4a,b). Vorticity and velocity distributions are non-Gaussian due to the
presence of the vortices and the far-field velocity associated with them (McWilliams
1990; Bracco et al. 2000a), respectively, consistent with coherent vortex dominance
in the tails of the PDFs. PDF tails reflect the nature of intermittency in the flow.
The invariance of the PDFs is further shown by the absence of Re dependency in
the velocity and vorticity kurtosis Ku (figure 4c; Ku[ω] ≈ 7.1 and Ku[v] ≈ 4.5 for
tF = 0.005; not shown Ku[ω] ≈ 3.8 and Ku[v] ≈ 3.2 for tF = ∞, while intermediate
values are found for tF = 0.07 and when Ekman drag is used). This result extends the
analysis of Schorghofer (2000b), where similar but not at all identical shapes for the
PDFs were found for different Re and is fundamental to the extrapolation towards
the limit Re → ∞ in the presence of coherent vortices. We verified for all our sets of
runs that, whenever the large-scale flow has reached a statistically stationary state,
PDFs are indeed invariant in shape.

Even though the normalized PDFs do not vary with the Reynolds number, the
field magnitudes do increase with Re (figure 5). We find that the dependencies have
power-law forms, for example E ∼ ReλE for λE ≈ 0.6 ± 0.05 in the set with tF =0.005.
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Figure 4. PDFs of (a) vorticity and (b) velocity at the various Re or the set of experiments
with finite forcing decorrelation time. (c) The kurtosis of the distributions across Re for the
vorticity (solid line) and the velocity distributions (dashed line), respectively.
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Figure 5. Re scaling for (a) energy (solid), enstrophy (dash-dotted) and the equivalent
Kolmogorov scale, Kν (dashed) and (b) energy and enstrophy dissipation rates: εν (solid),
χν (dash-dotted), εμ (dotted), χμ (dashed).

Table 2 lists λ values for other variables based on a least-square logarithmic fit and the
associated estimation error in the slope for two of our sets of runs. Person’s chi-square
tests confirm the statistical significance. Power-law dependencies are found for all the
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Power-law exponents

Variable λ, tf = 0.005 λ, tf = ∞

kE −0.042 ± 0.001 −0.045 ± 0.002
kν 0.455 ± 0.002 0.46 ± 0.02
E 0.60 ± 0.05 0.36 ± 0.02
Z 0.58 ± 0.04 0.37 ± 0.01
(∇ω)2 1.41 ± 0.05 1.26 ± 0.03
εν −0.05 ± 0.06 −0.38 ± 0.03
εμ, ψ2 0.72 ± 0.05 0.48 ± 0.02
χν 0.75 ± 0.05 0.49 ± 0.04
χμ 0.60 ± 0.10 0.37 ± 0.01

Table 2. List of exponents λ for the power-law scaling of the Re dependencies for various
quantities for tF = 0.005 and tF = ∞.

solution sets we have obtained using different values for k0, μ (or an Ekman drag
counterpart) and tF . The fitted exponent values, however, are not universal, although
they do have the same signs and similar relationships among the different variables;
the exponents depend on the forcing function through its influence on the large-scale
coherent structures. Because of the non-universality, we have not attempted to make a
theory for the λ values. In our method of posing the calculations, we choose decreasing
ν with increasing resolution N , hence increasing Re. The post facto Re dependencies
are λν = −0.66 and λN = 0.42 for tF = 0.005, and λν = −0.76 and λN = 0.47 for tF = ∞.
A consistency check on our choices is that kν in (2.7) has essentially the same λ value
as N , indicating that we have approximately kept the proportional resolution of the
dissipation range constant in our solution set.

Note that E and Z have the same exponents within a given tF solution set (λ∼ 0.6
and ∼ 0.4 for tF = 0.005 and tF = ∞, respectively), which demonstrates similar scaling
behaviours for the dominant part of the fields around the forcing and coherent vortex
scales. The palenstrophy 〈(∇ω)2〉 increases much faster (λ= 1.4 and 1.3), showing the
relative growth of small-scale variance with Re. The dominant dissipation rates are
large-scale εμ for E and small-scale χν for Z, consistent with the inverse-energy and
forward-enstrophy cascades, respectively. Furthermore, they both have essentially
the same exponent (λ> 0.7 and λ∼ 0.5 for tF = 0.005 and tF = ∞, respectively),
as they should if QE and QZ have identical scaling with spectrally narrow-band
forcing. This dissipation exponent is modestly larger than the exponent for E and
Z, indicating that the throughputs are increasing somewhat faster than the contents
due to increasing flow correlations with F in QE and QZ . Because 〈ψ2〉 ∝ εμ, the
throughput must increase somewhat faster than E and Z as the energy centroid
kE weakly shrinks (λ −0.04 for all forcing considered) and moves deeper into
the hypoviscous dissipation range. The secondary dissipation rates have weaker Re
dependencies for finite tF (i.e. λ ≈ 0 for small-scale εν , and λ= 0.6 for large-scale χμ),
to be compared to λ ≈ −0.4 for εν and λ ≈ 0.4 for χμ when tF = ∞; those exponents
imply that the inverse and forward cascades become increasingly distinct at large
Re. The normalized rate of small-scale energy dissipation, rE = εν/E ∼ Re−0.65 and
∼ Re−0.74 for finite and infinite tF , respectively, is vanishingly small, even as the eddy
turnover rate, t−1

e ∼ Re0.3 and ∼ Re0.4, increases with stronger flow. In our solutions
with tF = 0.005, εν vanishes much slower than in one of our alternative sets with
tF = ∞, where the vortex component is visibly less dominant, and we find εν ∼ Re−0.4.
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Alexakis & Doering (2006) derived a theoretical prediction of εν for a broad class of
imposed large-scale forcing but under the classical assumptions about homogeneity,
isotropy and k-local nonlinear interaction, hence neglecting the role of the coherent
vortices, and fixed velocity and centroid wavenumber. In their results, the Re scaling
for εν is bounded by � kEU 3Re−1/2. In all our solution sets with different forcings,
all of εν , U ∼ E1/2, and kE vary with Re, but the normalized dissipation rate has
essentially identical scaling, independent of the forcing, and for the range of Reynolds
numbers considered, it lies well within their estimate:

εν

kEU 3
 Re−0.9 < Re−1/2. (3.2)

4. Discussion and conclusions
In summary, we analysed numerical solutions for randomly forced, stationary,
homogeneous two-dimensional turbulence to examine their dependencies on Reynolds
number (Re). The principal conclusions are as follows:

(i) Coherent vortices dominate the flow near the forcing scale and further emerge
at small scales, also within the filaments and vortex cores, when Re is large enough;

(ii) The energy spectrum and second-order structure functions show simple,
previously anticipated scaling behaviours;

(iii) The intermittency of the flows expressed in distribution functions is
asymptotically invariant with Re. This is in contrast to the known growing
intermittency in three-dimensional turbulence (e.g. Ku[ω] ∼ Re1/3; Sreenivasan &
Antonia 1997); and

(iv) Energy, enstrophy and their dissipation rates show simple power-law Re
dependencies with increasing relative dominance by large-scale energy dissipation
and small-scale enstrophy dissipation.
The last two conclusions are novel and provide for the first time a test of universality
theories for two-dimensional turbulent flows taking into account the far field and
the spatial velocity correlations associated with the coherent vortices. Indeed, with
this work we have shown that even at large Reynolds numbers (up to at least
∼107) power-law exponents and the value of the intermittency measures are non-
universal; thus, a fundamental theory cannot be developed. We associate non-
universality of scaling exponents with the variety of coherent vortex populations
arising with different random forcing properties, especially tF , and probably the
large-scale damping mechanism (only slightly explored here). Nevertheless, the general
character of Re scaling is similar across the different solution sets we examined, in
particular the asymptotic invariance of the intermittency measures. These results
allow extrapolation towards the asymptotic limit of Re → ∞, relevant to geophysical
and astrophysical regimes and their large-scale simulation models where turbulent
transport and dissipation must, at least partly, be parameterized.

Support and computer time from the ARSC in Fairbanks have been invaluable.
We thank Martin P. King for helping with the parallelization of the turbulence code.
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